Note

The identification of N-substituted 1-amino-1-deoxyhexuloses by ¹³C-n.m.r. spectroscopy of their oximes

WERNER FUNCKE, CLEMENS VON SONNTAG,

Institut für Strahlenchemie im Max-Planck-Institut für Kohlenforschung, Stiftstrasse 34–36, D-4330 Mulheim a.d. Ruhr (Deutschland)

AND ALMUTH KLEMER

Organisch-Chemisches Institut der Westfalischen Wilhelms-Universität, Orleans-Ring 23, D-4400 Munster (Deutschland)

(Received May 19th, 1978, accepted for publication, May 30th, 1978)

The Amadori rearrangement^{1 2} is the isomerization of an N-substituted aldosylamine (2) to an N-substituted 1-amino-1-deoxyhexulose (3, 4)

This reaction is of biochemical interest, and has often been described from a preparative^{1,3,4} and mechanistic² point of view. For instance, the Amadori rearrangement products 3 and 4 have long been recognized as key substances in the non-enzymic, browning (Maillard) reaction^{1,5,6}.

The identification of the products 3 and 4 is often difficult, because glycosylamines 2 may also be present in the reaction mixture⁴, and all the possible isomers of 2 and 3 may have similar chemical and spectroscopic properties⁴ Only the open-chain structure 4 can be determined by 1 r spectroscopy⁸, due to its C=O band near 1720 cm⁻¹ With the help of ¹³C-n m r spectroscopy, the constitution and configuration of the Amadori products 3 and 4 have been determined⁹ If solutions of N-substituted 1-amino-1-deoxyhexuloses in pyridine were allowed to mutarotate, up to 29 ¹³C-signals (all for the carbohydrate part of the molecule) appeared, most of these signals occurred in a very narrow range¹⁰ This finding shows that all five possible isomers (4, two pyranoses 3, and two furanoses 3) were formed

316 NOTE

Addition of hydroxylamine hydrochloride in pyridine¹¹ to the mixture of the five isomers drastically simplified the ¹³C-n m r. spectra. All of the products are converted quantitatively (>98%) into oximes within a few minutes at room temperature. As shown below, two isomers are formed, and hence a maximum of 12 ¹³C-n.m r. signals for the carbohydrate part of the molecules can be observed Furthermore, the glycosylamines 2 do not give this reaction. In the present paper, the following compounds have been investigated by ¹³C-n m r spectroscopy 1-deoxy-1-(N,N-dibenzylamino)-D-fructose oxime (5), 1-deoxy-1-(N-methylanilino)-D-fructose oxime (6), 1-deoxy-1-piperidino-D-fructose oxime (7), 1-deoxy-1-morpholino-D-fructose oxime (8), and, as reference, D-fructose oxime (9)

The ¹³C-spectra were obtained under conditions of proton-noise decoupling, and the data are given in Table I.

In all of the cases, only two products are present They can be assigned to the open-chain forms of the syn-E and anti-Z isomers. This is made possible by comparison with aldoximes and ketoximes of simple products¹² and of some monosaccharide O-methyl oximes¹³ investigated previously by ¹³C-n m r spectroscopy. The C-1-C-6 signals of the D-fructose O-methyl oximes¹³ are nearly identical with those of D-fructose oxime (9) In this paper, 9 is used as reference material, as it has the same constitution (apart from R) as the Amadori products 5-8

As expected, the resonance of the sp²-hybridized C-2 of 5-9 is seen between δ 153.6 and 1613 So the ¹³C-signals of the open-chain form of non-oximated products are shifted upfield by up to 58 p p m on oxime formation. In all cases, the signal for syn-C-2, as compared to the anti-C-2, is shifted upfield by up to 2 p p m. Only for 6 do the two C-2-resonances overlap. The resonances of C-1 and C-3 also shift upfield on oxime formation^{10,12}. The shift of the signal for the carbon cis to the =N-OH group is larger than that for the carbon located trans, an effect noted earlier with cis and trans alkenes¹⁴. The difference amounts to 5.2-7.6 p.p.m. This effect is the basis for the assignments to the syn and anti forms

NOTE 317

TABLE I ${}^{13}\text{C-chemical shifts}^a$ for the oximes 5–9 in pyridine- d_5 at 35°, and the *anti-syn* ratio

Compound	5	6	7	8	9
syn form					
C-1	48 9	48 8	50 7	50 9	56 4
C-2	157 4	159 5	153 6	155 6	161 3
C-3	72 2	70 6	72 9	73 0	71 1
C-4b	74 8	73 9	76 3	76 0	73 8
C-5 ^b	73 3	73 2	73 0	73 2	72 9
C-6	65 7	65 3	65 1	65 4	64 9
antı form	-				_
C-1	54 8	54 5	58 3	58 4	61 6
C-2	158 1	159 5	155 6	156 5	161 9
C-3	68 6	68 3	68 3	68 1	67 8
C-4b	74 0	74 4	73 6	73 8	73 4
C-5b	73 3	73 5	72 9	73 2	72.7
C-6	65 5	65 4	65 3	65 4	64 8
R¢	137 9	151 3	55 3	66 2	
	134 8	150 9	54 8	65 9	
	131 6	130 0	24 3	54 5	
	130 7	129 8	22 5	53 9	
	129 7	118 0			
	129 6	117 5			
	129 5	114 3			
	59 5	1140			
	58 3	40 2			
		39 5			
anti-syn Ratio ^a	1 1	1 3	4 2	40	12

^aShifts are in ppm downfield from tetramethylsilane ^bAssignments uncertain ^cSee formulae ^aThe intensities for equivalent carbon atoms are compared

The variations in the positions of the 13 C-signals for C-1 are rationalized in terms of the different groups R. The signals at $\delta \sim 65.0$ and $\delta 72.7-76.0$ have shifts typical of primary and secondary alcohols, respectively

The assignment to the *syn* and *anti* forms is supported by the relative intensities of the ¹³C-signals. In all cases, the major isomers are the *anti* forms (see Table I). The *anti-syn* ratio for 7 and 8 is exceptionally high, because of the steric hindrance imposed by the large, cyclic amino-group. Such a steric influence was previously observed with simple ketoximes and some monosaccharide O-methyl oximes¹² ¹³

Apart from the pyridine- d_5 signals and the resonances of the groups R, which are not discussed here, there are no further signals in the ¹³C-spectra proving the absence of cyclic oxime derivatives. If present, their concentration must be below 3%, as the signal-to-noise ratio is quite high in all the spectra

Under the experimental conditions, the glycosylamines are not stable, but are quantitatively converted into D-glucose oximes (syn and anti forms) and the corre-

318 NOTE

sponding amines This was observed with N-butyl- β -D-glucopyranosylamine monohydrate and N-(β -D-glucopyranosyl)piperidine. There is no difficulty in distinguishing the aldose oxime from the N-substituted 1-amino-1-deoxyketoxime, even in a mixture, because the signals, especially those of C-1-C-3, are well separated

EXPERIMENTAL

 13 C-N m r. spectroscopy — The 13 C-spectra were obtained under conditions of proton-noise decoupling on a Bruker WH 270 instrument (67 8 MHz for 13 C, with an internal deuterium lock) operating in the Fourier-transform mode. It was equipped with a Nicolet BNC 12 computer with a 32K data memory and a Diablo Disk-System. All measurements given in Table I were carried out at 35° on solutions in pyridine- d_5 (10-mm sample tubes) with a spinning rate of $\sim 30~\text{sec}^{-1}$. Up to 20 000 scans with a pulse sequence of 10 sec and a pulse angle of 30° were used to record a spectrum. Internal standards were tetramethylsilane or the highest pyridine- d_5 signal (δ 148 4 relative to that of Me₄S1)

Oximes — The Amadori rearrangement products 1-deoxy-1-(N,N-dibenzyl-amino)-D-fructose¹⁵, 1-deoxy-1-(N-methylanilino)-D-fructose¹⁵, 1-deoxy-1-piperidino-D-fructose⁶, 1-deoxy-1-moipholino-D-fructose¹⁵, the glycosylamines N-butyl- β -D-glucopyranosylamine monohydrate⁹ 16 and N- $(\beta$ -D-glucopyranosyl)piperidine¹⁷, and D-fructose (2 25 mmol) were dissolved in 1 5 ml of pyridine- d_5 together with hydroxylamine hydrochloride (4 5 mmol) Ail of the solution of each sample was used for the ¹³C-n m r measurements The reaction was complete within a few minutes, and the mixture was stable for several days at room temperature

ACKNOWLEDGMENT

We thank Mr J Batter for the ¹³C-n mr measurements

REFERENCES

- 1 J E HODGE, Adv Carbohydr Chem, 10 (1955) 169-205
- 2 H SIMON AND A KRAUS, Fortschr Chem Forsch, 14 (1970) 430-471
- 3 L M J VERSTRAETEN, Adv Carbohydr Chem, 22 (1967) 229-305
- 4 K HEYNS AND W BEILFUSS, Chem Ber, 106 (1973) 2693-2709
- 5 K HEYNS, T CHIEMPRASERT, AND W BALTES, Chem Ber, 103 (1970) 2877-2884
- 6 J E HODGE AND C E RIST, J Am Chem Soc , 75 (1953) 316-322
- 7 A KLEMER AND W FUNCKE, Carbohydr Res., 33 (1974) 313-318
- 8 F MICHEEL AND V HUHNE, Chem Ber, 93 (1960) 2382-2387
- 9 W FUNCKE AND A KLEMER, Justus Liebigs Ann Chem, (1975) 1232-1235
- 10 W FUNCKE AND A KLEMER, Carbohydr Res, 50 (1976) 9-13
- 11 M Iio, R Shimotokube, and H Omura, J Fac Agric Kyushu Univ , 20 (1975) 1-6
- 12 G E HAWKES, K HERWIG, AND J D ROBERTS, J. Org Chem, 39 (1974) 1017-1028
- 13 W Funcke and C von Sonntag, Carbohydr Res, 69 (1979) 247-251
- 14 O E NORMAN, M JAUTELAT, AND J D ROBERTS, J Org Chem, 36 (1971) 2757-2766
- 15 J E HODGE AND B E FISHER, Methods Carbohydr Chem, 2 (1963) 99-107
- 16 E MITTS AND R M HIXON, J Am Chem Soc, 66 (1944) 483-486
- 17 J E HODGE AND C E RIST, J Am Chem Soc, 74 (1952) 1494-1497